High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation
نویسندگان
چکیده
Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0-30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens.
منابع مشابه
Acidification modulates the traffic of Trypanosoma cruzi trypomastigotes in Vero cells harbouring Coxiella burnetii vacuoles.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic a...
متن کاملHost Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation
Coxiella burnetii is the etiologic agent of human Q fever and targets alveolar phagocytic cells in vivo wherein the pathogen generates a phagolysosome-like parasitophorous vacuole (PV) for replication. C. burnetii displays a prolonged growth cycle, making PV maintenance critical for bacterial survival. Previous studies showed that C. burnetii mediates activation of eukaryotic kinases to inhibit...
متن کاملCoxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes.
Coxiella burnetii is an intracellular Gram-negative bacterium that causes human Q fever, a flu-like disease that can progress to chronic, life-threatening endocarditis. In humans, C. burnetii infects alveolar macrophages and promotes phagosomal fusion with autophagosomes and lysosomes, establishing a unique parasitophorous vacuole (PV) in which to replicate. The pathogen uses a Dot/Icm type IV ...
متن کاملGenetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation.
Macrophages from A/J and BALB/c mice were more susceptible to Coxiella burnetii phase II infection than were those from C57BL/6, C57BL/10, B10.A, C3H/HePas, and Swiss mice. Resistant macrophages effectively controlled the development of large replication vacuoles (LRVs), which accounted for the restriction of bacterial multiplication within the cultures. However, compared to fibroblasts, all ma...
متن کاملEffector Protein Translocation by the Coxiella burnetii Dot/Icm Type IV Secretion System Requires Endocytic Maturation of the Pathogen-Occupied Vacuole
The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017